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Modeling of Heterogeneous Materials and Media at 
Multiple Scales is of Fundamental Importance

 Ceramics

 Composite materials

 Catalysts and membranes

 Biological tissues

 Field-scale porous media (aquifers; soil; etc.)



Depending on the Length Scale, Many Approaches Have 
Been Developed to Model Heterogeneous Media 

 Continuum approach (phenomenological)

 Pore-network models (porous media)

 Direct simulation with 2D or 3D images of the media

 Developing a high resolution model and then up-scale it

 Reconstruction



What is Reconstruction?

Given a certain amount of data for a heterogeneous material, how does 
one construct a model for the material that not only honors the data, 
but also provides accurate predictions for those properties for which 
little or no data may be available, or are too difficult/expensive to 
measure, or are not used in the reconstruction?



Stochastic Approaches to Reconstruction

One attempts to generate plausible realizations of the material based on some 
data

 Stochastic approaches based on statistics (Adler; Torquato; Jiao, others)

 Process-based approaches that use such statistics (Roberts and Schwartz; 
Hilfer; Bryant and Blunt; Øren and Bakke, others)



Stochastic approaches to reconstruction (continued)

In all cases, an “energy functional” that measures the difference between 
the data and the “predictions” of the model is minimized by simulated 
annealing, the genetic algorithm, or by another minimization/optimization 
method.

The data used are usually two-point statistics (correlation functions; cluster 
connectivity functions, etc.)
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Stochastic approaches to reconstruction (continued)

But, there are also methods that do not use an energy functional, but use higher 
other statistics

 Multi-point statistics (developed by geoscientist; Strebelle; Arpat; Zhang)

 Cross-correlation function approach (Tahmasebi & Sahimi)
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Reconstruction with Cross-Correlation Function

• As the input data, the method uses digital images, or hard data, etc., which contain 
the essential features of the material’s morphology

• But, it is capable of integrating any other type of data in the reconstruction process

• The image could be 2D or 3D

• We refer to the method as cross correlation-based simulation (CCSIM)

Tahmasebi, Hezarkhani, and Sahimi, Computational Geosciences 16, 779 (2012)
Tahmasebi and Sahimi, Physical Review Letters 110, 078002 (2013)



The Approach

Given the Digital Image (DI) or the Data

 Represent the material’s realization (model) by a 2D or 3D 
computational grid 

 Every two neighboring blocks share an overlap region, whose purpose 
is making transition from one block to the next seamless

 Reconstruct the material block-by-block along a 1D raster path, 
oriented in any desired direction



The approach (continued)

 Sample the heterogeneity of the material and fill the first block and its 
overlap region with the next block. We refer to the details of the overlap 
region as data event that can change during reconstruction

 Match the overlap region (not the block) with the entire data set or 
digital image

How do make sure that the overlap region matches?



The Matching is Based on a Cross-Correlation Function
➢ Euclidean distance:
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✓ For the “distance” to be minimum, is represented the cross-correlation function 
(convolution of the data and the sample) should be maximum:
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The approach (continue)

- Using raster path for visiting the simulation grid
- Using overlap region for seamless transition
- Using cross correlation for similarity calculations

Digital Image Simulation Grid



Simulation Grid with Hard Data

Conditional Modeling: Subject to Honoring Hard Data

Adaptive recursive template splitting

✓ First, the algorithm tries to find a 
pattern in the morphology that 
honors the hard data.

✓ If no hard data can be found, then 
the block containing the data event 
is divided into smaller blocks



DI

Stochastic realizations

DI

Stochastic realizations
DI

Stochastic model



Variogram

in x direction

Variogram

in y direction

MPC

Effective permeability

Quantitative Check of the Accuracy



Limitations of the Algorithm
➢CPU time

➢It is not fast enough for multi-million cell 3D grids and DIs

➢Patchiness

➢ The problem remains in the case of continuous properties

➢ The method was accelerated by carrying out most of the 
computations in the Fourier space

 Tahmasebi, Sahimi & Caers, Computers & Geosciences 67, 75 (2014)

 Tahmasebi & Sahimi, Water Resources Research 52, 2015WR017806; 52, 2015WR017807 (2016) 



Multiscale CC Simulation (MS-CCSIM)

 Most of the computations are for the cross-correlation function

 Cross-correlation functions are computed between the overlaps 
and DI

 The high-resolution DI can be transformed into a pyramid of 
consecutively coarsened views of the same image

 The pyramid allows for rapid search of the matching patterns 
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Addressing the CPU Issue: Constructing DI at Various Scales

Original DI

✓ The rescaled DI can be obtained by several 
methods
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CPU Improvement

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6

C
P

U
 t

im
e

 (
se

co
n

d
s)

Number of cells
Millions

CCSIM

MS-MPS

3D Reconstruction

19

MS-CCSIM



Overlapping blocks Vertical discontinuity

_ =

2

Overlap error Boundary correction

Addressing Patchiness: Graph Theory

Tahmasebi & Sahimi, Water Resources Research 52, 2015WR017806; 52, 2015WR017807 (2016) 



Input realization

Mismatch HD : 

100%

Addressing Patchiness: 
Graph Theory

Initial realization

DI

Mismatch HD : 

24%

First iteration

Mismatch HD : 5%

Second iteration

Mismatch HD : 0%

Third iteration

Template size
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DI (300 x 300 x 10) Reconstructed (300 x 300 x 50)

CPU time: 7 (s)

900,000 cells 4,500,000 cells

(Data from JAPEX)

Fracture Pattern



Highly Heterogeneous Material

Realization 1

Improved algorithm
Improved algorithm

Reconstructed (200 x 100 x 40)

CPU time: 30 (s)

Realization 2
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Conditional Realization
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(Data from ExxonMobil)



Integration of Several Types of Data:
Each Dataset Has its Own Particle CC Function

 Data from various sources are integrated using the CCSIM algorithm

 Data integration helps reducing the uncertainty and use the available 
information more effectively.

𝑪𝒐𝒗𝒆𝒓𝒂𝒍𝒍 𝒊, 𝒋 = 𝑪𝑫𝑰 𝒅𝒆𝒗𝑻, 𝑫𝑰 + 

𝒎=𝟏

𝒏

𝝎𝒎𝑪𝒎𝑫𝑰 𝐦𝒅𝒆𝒗𝑻,𝒎𝑫𝑰

Tahmasebi and Sahimi, Transport in Porous Media 107, 871-905 (2015)



Binary Morphology

DISoft data True model

Realization Ensemble averageHard data



DI Soft dataReference Image (RI) Hard data

Realization #1 Realization #2 Realization #3

Continuous Morphology
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Long-Standing Problem: 2D to 3D Reconstruction

Generate a high quality 3D sample from a single 2D thin section

 CCSIM is well suited for a sample with high entropy (heterogeneity)

 First, the external surface is reconstructed (conditional CCSIM)

 Next, the 3D medium is reconstructed layer-by-layer (plane-by-plane)

Tahmasebi and Sahimi, Physical Review E 85, 066709 (2012)

Tahmasebi and Sahimi, Physical Review Letters 110, 078002 (2013)



Original Reconstructed Original Reconstructed

Original Reconstructed



Non-Stationary Media

 Practically every large-scale porous medium is 
non-stationary

 By non-stationary we mean that the probability 
distribution functions of various properties vary 
spatially

 How do we reconstruct such porous media?

Tahmasebi and Sahimi, Physical Review E 91, 032401 (2015)



Approach 1: Watershed Transform

• Watershed transforms construct a gradient image (instead of 
working with the image or datasets) 

• That is,  a new image is constructed based on the local gradients 
between neighboring points in the original image or data

Tahmasebi and Sahimi, Physical Review E 91, 032401 (2015)



Input image Gradient image



Watershed Transform

• Three types of points
– Points belonging to a regional minimum
– Catchment basin / watershed of a 

regional minimum
• Points at which a drop of water will certainly 

fall to a single minimum

– Divide lines / Watershed lines
• Points at which a drop of water will be equally 

likely to fall to more than one minimum  
• Crest lines on the topographic surface



Watershed  Transforms

Non-stationary surface



• Start with a radius

• The radius can be extended or shrunk based on the 
Shannon entropy

• 𝑆 = −σ𝑖=1
𝑛 𝑝𝑖 ln 𝑝𝑖

pi = (histogram of sample i)/(length of the sample)

Approach 2: Shannon Entropy
Non-stationary surface

Realizations



Dicot wooden stem

Some Non-stationary Examples

Delta System 3D Delta system 3D FBM



Application to Medical Imaging



Application to Modeling of Shale Formations

 The main framework of the new method is the CCSIM

 CCSIM is well suited for a sample with high entropy (heterogeneity)

 But, shales manifest low entropy (low disorder)

 To deal with a low entropy image, a histogram matching is included to honor the 
one moments statistical properties



Iterative Algorithm

 The neighborhoods in X, Y and Z 
directions are used to find their 
corresponding matches in the input 
image.

 Difference between the patterns in the 
generated model and DI is calculated.

 The final selected 3D pattern should 
minimizes the energy function of final 
model.

𝒑𝒗,𝒛

𝒑𝒗,𝒙

𝒑𝒗,𝒚

𝒒𝒗,𝒛

𝒒𝒗,𝒙

𝒒𝒗,𝒚

𝐸 𝑞, 𝑝 =

𝑣



𝑖∈ 𝑥,𝑦,𝑧

𝑞𝑣,𝑖 − 𝑝𝑣,𝑖
𝛾

=

𝑣



𝑖∈ 𝑥,𝑦,𝑧



𝑢∈𝑁𝑖 𝑣

𝑞𝑣,𝑖,𝑢 − 𝑝𝑣,𝑖,𝑢
2



✓ Use three different images for representing the 

directional heterogeneities

✓ For capturing more structural features, a multi-

scale algorithm in three levels is used

✓ Histogram matching helps reproducing the multi-

modal distributions

Using different images for 

each direction

Multi-scale 

approach

Calculating histogram 

distances for pattern 

selection



Iterative reconstruction

Input 2D image

Realization 1 Realization 2 Realization 3

Exterior view

Cross sections



Multiscale Reconstruction of Shale

3D view 2D DIs

Large Scale

Small Scale

Large-Scale Reconstruction

Small-Scale Reconstruction

Integrated small- and large-scale models



Statistical Comparison
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Comparison of Pore-Size Distribution

50

Sample #1

Sample #2



Simulation of Transport and Deformation with the Realization is Extremely 
Time Consuming

✓Not every aspect of the morphology of the realization (model) of the
heterogeneous material makes significant contribution to its macroscopic
properties

✓Thus, one should find a way to “simplify” the realizations



• Consider a 2D image with spatial variable x, Fourier variable 𝝎, and polar coordinates 
𝒓 and 𝜽

• Define a pair of windows by



𝒋=−∞

∞

𝒘𝟐 𝟐𝒋 = 𝟏, 𝒓 ∈
𝟑

𝟒
,
𝟑

𝟐



𝒍=−∞

∞

𝑽𝟐 𝒕 − 𝒍 = 𝟏, 𝒓 ∈ −
𝟏

𝟐
,
𝟏

𝟐

• For each 𝒋 ≥ 𝒋𝟎 introduce the frequency window 𝑼𝒋 𝒓, 𝜽

𝑼𝒋 𝒓, 𝜽 = 𝟐− Τ𝟑𝒋 𝟒𝑾 𝟐−𝒋𝒓 𝑽
𝟐 Τ𝒋 𝟐

𝟐𝝅
52

Curvelet Transforms



• Define the waveform 𝝋𝒊 𝒙 such that
ෞ𝝋𝒊 𝝎 = 𝑼𝒋 𝝎

• 𝝋𝒊 𝒙 is the “mother curvelet”. All other curvelets at scale 𝟐−𝒋 are 
obtained by rotation and translation of 𝝋𝒊 𝒙

• Computationally, curvelets are more efficient than wavelets as they use 
much fewer coefficients to represent edges or wave fronts for a given 
accuracy  

53

Curvelet transforms (continued)



We define the curvelet coefficients by

𝑐 𝑗, 𝑙, 𝑘 ≔ 𝑓, 𝜑𝑗,𝑙,𝑘 = 𝑓 𝑥 𝜑𝑗,𝑙,𝑘 𝑥 𝑑𝑥

Compute the curvelet transform of the realization or model

Set a threshold for the curvelet coefficients

Set to zero all the coefficients that are smaller than the thresholod

Bring back the realization to the real space

54

Speeding up the Computations by Using Curvelet Transforms



Sandstone & Carbonates

(a) Original image. (b) A small zoomed-in portion. (c) After curvelet transformation

(a) (b) (c)

(d) (e) (f)



Example: Solving Diffusion Equation in the Original Image and in its Curvelet-Denoised 
Version

Very close agreement



Carbonate

Very close agreement

 



Increase in the Computation’s Speed

Sandstone N Threshold ε De × 10
7 

(cm
2
/s) Time (CPU sec)

Original image 238941 23.72 602

Original image in CT space 54181 0 23.95 134

Curvelet-transformed image 3659 0.5 23.97 10

Curvelet-transformed image 2182 0.7 24.08 7

Curvelet-transformed image 1896 0.9 24.24 5

Carbonate

Original image 543069 2.02 1556

Original image in CT space 129052 0 2.07 391

Curvelet-transformed image 8641 0.5 2.07 26

Curvelet-transformed image 5174 0.7 2.08 15

Curvelet-transformed image 4366 0.9 2.08 13



Summary
Reconstruction based on the cross-correlation function provides an accurate approach
for generating realizations (models) of all types of heterogeneous media and materials,
stationary or not non-stationary

✓ It is capable of integrating various types of data

✓ It can be used with hard (quantitative) data

✓ It can reconstruct multiscale, multiresolution media and materials

✓When combined with curvelet transforms, the result is a powerful tool for modeling of
complex materials and simulation of all types of phenomena in them
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Determining Representative Elementary Volume using SEM 

Images
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Multi-Facies (2D)

DISoft data True model

Realization Ensemble averageHard data


